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ABSTRACr

This research began with a mixed principle based creep analysis.
Then the work was redirected to a study of limiting performance
methodology, including a formulation for the limiting performance
analysis of large systems.

L. INTRODU O,

The usual design of dynamic systems, e.g., shock and vibration-

* isolation systems for ship foundations, requires the a priori choice of

a particular system of fixed configuration. The structural elements

'"forming the chosen system are then optimized to meet prescribed criteria.

The possibilities for optimization are limited, however, by the class of

Selements selected at the outset.

The concept and value of configurationless or true optimal design

of dynamic systems have often been recognized by the designer but almost

Snever successfully implemented, especially for large-scale systems. The

proposed formulations for dynamic systems, e.g., isolation systems, will

.!apply to problems for which such variables as maximum displacements or

stresses, relative displacements, peak velocities or accelerations, etc.

are of pacing concern. It is plausible that other optimal design

* criteria such as minimuhm weight can be incorporated.

II. FOP14ULATION

Ideally, system design should follow directly from the design

criteria with no a priori comnitment on the designer's part to a

particular design configuration. In practice, of course, this is not

achieved. A procedure is sketched here for the confirgurationless study

*-of large systems subject to dynamic loading.
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For a multidegree of freedom system with multiple " "

configurationless elements, the equations of motion become

[m]{xl + [c]{x} + [k]{k} + [U]{u} - [F]{f} (i)

where LU]{u} contains that portion of the system being designed. These

relationships require linear global kinematics, but no linearity

requirements are placed on the elements being designed. These elements

can be considered to be active vibration isolation elements.

The problem is to compute {.uJ such that certain design objectives .

are achieved. Subsequently, it is possible that system identification

procedures can be used to select (design) the near-optimal isolation

system.

More specifically, the systems design problem of interest here is

one where we choose portions of the system such that a performance index

I of certain reponses hr is extremized and certain response constraints

ck are satisfied. Typically, the problem is to find {u} such that

= max h (2)
r

is minimized subject to

Ck S (3) "%

where the bounds on the constraints are prescribed.

The calculation of (u}, suc~h that the optimization problem is

satisfied, can be formulated as a linear programming problem. To

observe this, note that the objective function (2) is equivalent to

• imposing the constraint 03

Ihrl < for all t (4) ..............
The problem is now to minimize v subject to the constraints

-wlhl < r 12f ... (5)• - -ity Codes
v as well as the constraints of Eq. (3)..alo

. . . . . . . .. . • - ,. --, -, - - - -. .,-'. . .... .. ..... .. ... . .. . -- "-." " " " ":7.. -an -- --I or



.7 k7 -. 7 70

|3 ". ___-

3-

Upon appropriate discretization, the problem can be placed in a

standard linear programming format. This follows because the genetic

forces {u }, which are nonlinear in the design space, are linear when

discretized in time. Standard linear programming software can be used

for the computations. Readily available linear programming codes can

routinely handle sets of equations with several thousand inequalities

with virtually unlimited variables. Computationally, the significant.35]

fact here is the problem of determining the true optimum (limiting

performance) of large systems is one of linear programming whose size is

independent of the number of degrees of freedom of the system. Rather,

it depends on the number of structural components, the number of

response constraints, and a factor related to the method employed for

time discretization.

W REGION OF
Z POSSIB3LE DESIGN
0

RF CONFIGURATIONLESS
REGION OF DESIGN
, PIMPOSSIBLE
SI DESIGN

MAXIMUM RESPONSE NO. 2

Fig. I Limiting performance
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A typical result for a limiting performance study is shown in Fig.

1, where a tradeoff between two peak responses (one a performance

function and the other a constraint) is illustrated. The value of such

information is clear. It is not possible, regardless of configuration,

to design an isolation system with performances below the true optimalg .. , . ".

curve. The actual design configuration can be sought as a second step

in the design process such that its response approaches that of the true

optimal response. Both passive and active configuration can be

considered. For steady state problems, one axis of the limiting

performance curve of Fig. 1 may portray frequency.

The study done under this grant concentrated on the formulation of

this problem for large scale systems represented by finite element

models.

III. SUMMARY OF WORK PERFORMED

A. Numerical Solution for Creep Problems

A new simpler solution procedure was devised for the finite element
analysis of creep problems. The creep strains were eliminated as
computation variables. At each time step a system is solved for the
stresses and velocities alone. This is in contrast to the usual
technique, such as used in ADINA, which solves for the stresses, creep
strains, and displacements at each time step. In numerical tests this
new procedure has been significantly faster than the techniques used in
ADINA. See Publication No. 1.

B. A Modal Aproach for the Formulation of the Limiting
Nitformance Problem

The limiting performance problem is formulated in terms of the modal
response of a system. This permits truly large systems, for which
analytically or experimentally determined modal characteristics are "
available, to be handled. This sets the stage, for example, for
coupling a limiting performance study to a shock isolation system being
designed with the Navy's DDAM procedures. This limiting performance

* formulation is implemented using linear programming, which does not
impose linearity on a control force yet permits a problem of immense
size to be solved. See Publication No. 4.

%%%-..'..



C. Development of Equations of Motion of the Limitin

Perormanc eStuy o Complex Systems 'nc&udi se
Formed of Subsystems Iv

This effort addressed the problem of preparing limiting performance
governing differential equations when control forces are embedded in a
large system or when the control forces connect subsystems for which
,nodal characteristics are available. This expands the capability of
limiting performance to include larger and more complex systems, such as
those performed by several systems. See Publication No. 2. ,

D. Modal Representation of Control Forces

The size of the computational solution of a limiting performance
problem does not depend on the number of degrees of freedom of the
system. Rather, it is a function of the number of constraints and the
manner in which the generic forces are discretized. This is a study of
the effect of replacing time disretization of the generic forces with a
time series representation based on the natural frequencies of the
system. Implementation of a formulation such as this can substantially
reduce the computational burden of a limiting performance solution. See
Publication No. 3.

E. Analytical Determination of the Limiting Performance

This is the development of a graphical solution for the limiting
performance of single-degree-of-freedom systems. Such an analytical
approach permits an in-depth study of the characteristics of limiting -
performance, such as the effect of different excitations. For example, a
sensitivity study can be performed of the improvement in response
achieved if there is some knowledge beforehand of the excitation.

IV. INDEX OF PUBLICATIONS

1. "An Improved Solution Procedure for Creep Problems", to appear,
International Journal of Numerical Methods in Engineering, 1986'

2. "Application of Limiting Performance Concepts to Structural
Control Problems", Chapter in Structural Control, Ed: H.H.E. Leipholz,
North-Holland, N.Y., 1985.

3. 'limiting Performance of Transient Systems by a Modal Analysis,Modal Control Approach", submitted for publication.

4. 'limiting Performance of Shock Isolation Systems by a Modal
Approach", to appear Eart e Engineering and Structural Dyamics,
1986.

5. "A Direct Method for Estimating Lower and Upper Bounds of the
Fundamental Frequency", Shock and Vibration Bulletin, 1985.
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